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Fig. 2. Scanning electron micrographs of the particles. (a) IDE particlea with mean diameter 1 pm: (b) ‘Bubbicles’ with mean diameter 1 pm. 

results in a phase of blood pool enhancement on the 
order of ten minutes which is followed by a period of 

liver enhancement [ 14,151. 
It should be noted that the actual size distribution of 

both the IDE spheres and the particle/bubble agent 
(‘Bubbicles’) results in a lognormal distribution with a 
standard deviation that is typically one-third of the 
mean measured diameter of the scatterers. More impor- 
tantly, the mean value for the size distribution can be 
tightly controlled and is highly repeatable (k50 nm for 

a specified diameter of 1 urn). For the purposes of this 

discussion, we will consider suspensions or either IDE 

or ‘Bubbicles’ with a uniform size distribution and a 
constant number density (number of scatterers per unit 
volume) that corresponds to a concentration of 10 mg 
of either 1 or 2 urn diameter solid IDE particles in a 
1 ml volume of water. This will help focus our investiga- 
tion of the small amount of entrained gas that needs to 
be stabilized within the rough, irregular surface surface nocus nocusD   ge TD 3  Tr 0.000.001  Tc 0.001  Tw (to ) Tj0  Tr -229.44 -11.76  TD .00395  Tc 0.0395  Tw18o 
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cantly enhance its echogenicity. The effects of a non- 
uniform size distribution and a variable number density 
will be addressed in the discussion. 

2. Theoretical model of the particle/bubble agent 

There are three scattering regimes which may be 
characterized by the relative size of the scattering object 
compared to the wave length of the incident acoustic 
wave. The and 4 0  TD 3  Tr 0.0794  Tw (object ) Tjw (Ultraso445ts ) z0  ku 0 79 41587  Tw (and 4 0  TD 3  Tr 03 Tr 13.44ne7  Tw (and 4 0 ymd ) Tj1==44ne7  Tw (a-204 -12  TD 3  0  TD 3  Tr 0.0035 -0.0014  4w (of ) 271/ij0  Tr 18.720 TD 3  Tr 0  Tc -0 121Tc 0.11812Tj0  Tris44ne7  Tw (a-2 TD 3  Tr -0.0790889  Tw (relative ) Tj0  Tr 30  Tr 65.28 0  TD 1420.1587  Tc2(length ) Tsity ) Tj0  Tr -2-18334.3 TD 3  Tr -0.1181  Tc -0.0038  Tw (a ) Tj0  Tr 7.92 0.4 D 3  Tr 0  Tc -0 1162  Tc 0.0162  Tw (LI44ne7  Tw (a-2 TD 3  Tr -0.07-0 121Tc 0.11812Tj0  Tris44ne7  Tw (a0  3 -0.1094  Tc 0.1094  Tw (discussion. ) Tj0 38.4 0  TD 3  Tr -0.0Tr -0.0284  Tc 0.028radiu) Tj0  Tr 31.0TD 3  Tr 0  Tc -0 9Tw (the ) T588  Twze ring ) Tj0  Tr5D 3  Tr -0.1187  Tc 0.1187  Tw (variable ) Tj0  Tr-2 TD 3  Tr -0.07-0 0520.181  T0520.184  Tpw del ) Tj0  Tr 26 Tr -0.1094  Tc 0. -0 9Tw (the ) T588  TwTw (objer) ) Tj0  Tr -21  Tr 65.28 0  TD 121Tc 0.11812Tj0  Tris44ne7  Tw (a0  547.04 0  TD 3  Tr 590.181  T0590.184  uTj0  Tr 11.52 22TD 3  Tr 0  Tc -0  Tw (the ) Tj0  Tr 17.52 0  TD 3) T.88 00  TD 3  Tr -0.078720.1587  8720.15(2. )ffbjentiatssion. ) Tj050  TD 3  Tr -0.079  TcTw (the ) Tw (discussring ) Tj0  Tr 08.32 -12  TD 3  T 590.181  T0590.184  which ), 
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the discussion. 
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Table 1 

qirs values 

Substance qas (m-i sr-‘) Source 

Liver 

Standard 

Average 

Fresh 

Fixed 

Tumor 

Fixed 

Bovine 

Blood 

26% HMTC 

40% HMTC 

40% HMTC 

40% HMTC 

3.0 x 10-l 

1.9 x 10-l 

2.7 x 10-l 

3.2 X 10-l 

1.4 x 10-l 

1.9 X 10-l 

1.76 x 10-l 

2.8 x 
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For the coherent scattering of the particle/bubble pair 
considered, the total scattering angle distribution func- 
tion of the pair Qt is the sum of scattering angle 
distribution function of the bubble, Qg and the scattering 
angle distribution function of the particle, @r. 

Q,(V) = @,(vl) + @r(V). (7) 

Given that the particle material has compressibility 
K~ and density pi, and the gas being discussed has 
compressibility ~~ and density pg, we can define the 
compressibility difference of the particle and gas with 
respect to water as yKp and I’~, and the density difference 
of the particle and gas with respect to water as ;I,, and 
“, ,pp. We define the compressibility difference betw:en a 
scattering material s and the propagating medium IN (in 
this case water) as 

KS-K,,, 
+, lKs=- (8) 

Km 

and the analogous density difference as 

3PS - 3Pnl 
Y& = 

2PS+P, . 
(9) 

A simple substitution of Eq. (3) for the bubble and the 
particle into Eq. (7), combined with the relationships in 
Eq. (6), results in the following expression: 

@&) =3 k2a3[X(yKp +i’& cos q) 

+ ( 1 - x> CL, + >‘pp as v7)l. (10) 

Utilizing Eq. ( IO), we can evaluate Eq. (4) for p= rc, 
arriving at an expression for the differential backscatter- 
ing cross-section for the particle/bubble pair 

gd,(~) = l@t(u1)12 =$ k4U6 [x(?;,, -v,J 

+(1 -X)(Y,, -YJ2. (11) 

An alternative way to model the particle/bubble agent 
is to combine the scattering behaviour of particle and 
gas components into an ‘equivalent scatterer’ with a 
specified volume fraction of gas. 

The effective compressibility, K,, for a volume con- 
sisting of two different and immiscible substances with 
compressibilities leg (gas) and K~ (particle), and volume 
fraction of gas, s, relative to the total volume can 
expressed [ 181 as 

K,=(l-_Y)tip+IKg. (12) 

For the same two substances, with densities pg (gas) 
and pp (particle), a similar linear mixing relationship 
for the effective density can be derived, where the 
effective density, P_ is shown to be 

pe=(l-.u)pp+xpg. (13) 

Thus, we can model the complex particle/bubble 
scatterer as an equivalent 1 urn or 2 urn diameter scat- 

terer with some effective density and compressibility, as 
shown in Fig. 3(C). Utilizing the expressions for K, and 
/)e for I<, and pS in Eqs. ( 8) and (9) and then substituting 
the resultant expressions in Eqs. (8) and (9) into Eqs. (3) 
and (4) results in a differential backscattering cross- 
section where 

The equivalence of the two formulations of the model 
is exhibited in Fig. 4, which shows the backscatter 
coefficient of a particle/bubble suspension with a number 
density equivalent to a 10 mg ml ~’ concentration of 
solid IDE particles alone (no gas) calculated using both 
approaches, for particle/bubble scatterers with overall 
diameters of 1 and 2 urn. This concentration produces 
a 
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Volume fraction of gas 

Fig, 4. Backscatter coefficient at 5 MHz calculated from both models as functions of volume fraction of gas, x. Since results from Model I (solid 
triangles) and Model 2 (open squares) were similar, alternate values of each curve are displayed. The suspension medium is water, and the gas in 

the agent is air. The concentration of the agent is IOmgml~‘. Parameters used: water xn20 =4.6x IO-” m2 N-r, {)n20 =998 k&m-“, 

~,~,=l.48xl0”ms~‘,airti,=7.0xl0~bmZN~’,~~,=l.29kgm~3. solid IDE ti,=2.Ox 10~“m2N~‘. p,=2.4Ox 10”kgm~3. 

LeCroy 9430 
Oscilloscope 

Exl a 4 

I 

b MlCROCOMFUlER 

TTE 5 MHz 

and submersible stirrer 

Fig. 5. Block diagram of equipment configuration for experimental measurements. See text for details. 

modification for the use of a focused transducer based 
on the diffraction correction formulation of Chen [22]. 
A system backscatter coefficient calibration factor was 
derived utilizing a reference substitution method 
whereby a flat, steel block reflector placed at the focus 
of the transducer allowed evaluation of the measurement 
system electro-mechanical transfer function at 5 MHz. 
This involved numerical calculation of the volume integ- 

ral of the radiation pattern and use of a diffraction 
correction factor. 

Measurements were carried out with a gated transmis- 
sion and reception system as shown in Fig. 5. Timing 
was controlled by a Tektronix PG501 pulse generator. 
The 10 cycle, 5 MHz tone burst was generated by a 
Hewlett Packard 8116A function generator which was 
gated through to a Kay Elemetrics attenuator before 
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