記録的でへびないがす。			
ELSEVIER	Ultrasonics 36 (1998) 883-892	
	A genetic beakers	ttor proportion of	
r			
Dan Phillips *, X	ucai Chen, Raymond Ba Kevin J	iggs, Deborah Rubens, Micha . Parker	el Violante,
<u> R</u> ochester Cente	r for Biomedical Ultrasound, Uni	versity of Rochester, Rochester, NY 146,	27. USA
Abstract			
Pubble based auconanciona with	<u>diamators in the 1.5 um ran</u>	as have been developed for use as ul	tracound contract agente
enhancement capabilities. The duffer a number of approaches to fu	rability of these bubbles in the rther stabilize them. One of the	blood stream has been found to be a approaches has been the development.	imited, providing impetus of micrometer-size porous
morphology and surface chemist	ry involved in the production c	of this type of agent makes it unfeasib	le to directly measure the
fraction of gas should be necessa	ry to significantly enhance the	echogenicity of this type of particle-ba	sed contrast agent. In the
scatterer and the overall scatterer Using common mixture rules, it arrive at a result that is similar cross-section is due to the compre	diameter. Initially, the volume is then shown that the gas can to that for a single, discrete vo ssibility difference between gas a	fraction of gas is considered as a discre- be considered to be distributed throug plume of gas. The main contribution t and water. The backscatter coefficient is	ete entity or single bubble, hout the particle and still o the increased scattering s computed as the product
rights reserved.			
Keywords: Ultrasound; Contrast;	Bubble		
1. Introduction		enhanced backscatter contra-	st provided by the
Diagnostic ultrasound ima acoustic pressure waves reflect	ges are formed from the ed from various scattering	The use of air and other gases enhancement has a long history.	for ultrasound contrast An early study involved les into the blood [1]
		This forms the basis of a metho	<u>d which is still used for</u>
location, relative acoustic proj	series, and the frequency,		
magnig.			٢
Two of the acoustic proper	rties which determine the	persed, they are eliminated in t bed, where they are trapped an	he pulmonary capillary nd gradually absorbed.
compromibility - The bigh	compressibility of a gas	Additionally, the high pressure	experienced in the left
		that manage to pass through the	pulmonary circulation.

* Corresponding author. Tel.: (716) 275 4066/(716) 275 9542; fax: (716) 473 0486; e-mail: phillips@ee.rochester.edu

9041 (242/09/9

that manage to pass through the pulmonary circulation. Unfortunately, these elimination mechanisms rule out acoustic contrast enhancement for a majority of soft tissues using intravenous injection of free bubbles. smaller than a red blood cell are less apt to produce a harmful obstruction to flow within a capillary bed. An additional benefit of small bubbles with diameters less than 10 μ m is that their acoustic resonance peaks lie within the frequency range commonly utilized for diagonal participation.

account, Miller [3] derived an expression for the resonance frequency, f_0 , of a free bubble as

$$f_0 = \frac{1}{2\pi a} \sqrt{\frac{3\gamma}{\rho} \left(p_0 + \frac{2\sigma}{a} \right) - \frac{2\sigma}{a\rho}}$$
(1)

where γ is the ratio of heat capacities of the gas at constant pressure and volume, *a* is the radius of the bubble, p_0 is the ambient pressure and ρ is the density of the surrounding medium. Using this expression for a free air bubble in water, the resonance frequency is 11.9 MHz when $a=0.5 \,\mu\text{m}$ and 4.86 MHz when $a=1 \,\mu\text{m}$. This resonance in the oscillatory behaviour of a bubble serves to enhance the acoustic scattering crosssection (to be discussed later) of the bubble as shown in Fig. 1.

However, it would appear that nature conspires to eliminate small bubbles. Surface tension acts to eliminate free bubbles as their radius decreases [4,5]. The pressure due to surface tension (p_{st}) exerted on the gas inside a bubble is [5] $p_{st} = 4\sigma/a$. Based on diffusion and surface tension alone, it has been estimated that a bubble with a radius of 10 µm would completely collapse in less than 7 s in a completely gas esturated solution of water [6]. Given the complex chemical environment of the blood,

In an attempt to capitalize on the inherent contrast enhancing effect of a gas bubble, a number of strategies have been pursued which could ultimately result in its use as a safe, stable, consistent and possibly quantifiable

which consists of a suspension of stable, gas-bearing particles. It should be noted that a suspension refers a mixture of a fluid and defined concentration of insoluble objects that are dispersed in the fluid. These suspensions provide increased ultrasound contrast when imaging the liver, and have the potential for providing similar blood pool enhancement for Doppler flow studies. The particles are relatively dense, solid spheres, $1-2 \mu m$ in diameter, whose preparation results in a complex surface morphology and surface chemistry that facilitates the entrapment and stabilization of air bubbles on or within the particle. An earlier X-ray and ultrasound contrast agent consisting of solid spheres comprised of IDE (iodapamide ethyl ester) [12,13] is shown in Fig. 2(a). A particle/bubble agent, 'Bubbicles', shown in Fig. 2(b), is also comprised of IDE. Its manufacture produces an irregular surface morphology that provides numerous hydrophobic crevices suitable for the stabilization of gas bubbles. This agent is delivered into the blood stream as a suspension with sufficient concentration to enhance the ultrasonic contrast between the plasma it is carried in and the tissues to which it is delivered. The Kuppfer

majority of the delivered dose after 10-20 min. This

Fig. 1. Backscatter cross-sections (μ m²) for an air bubble in water. Parameters used for calculation: $\rho = 998 \text{ kg m}^{-3}$ (water). $\sigma = 7.305 \times 10^{-2} \text{ N m}^{-1}$ (air/water interface), $\gamma = 1.402$ (ratio of specific heats, adiabatic), $p_0 = 1.013 \times 10^5 \text{ Pa}$ (ambient pressure, 1 atmosphere).

results in a phase of blood pool enhancement on the order of ten minutes which is followed by a period of liver enhancement [14,15].

It should be noted that the actual size distribution of both the IDE spheres and the particle/bubble agent ('Bubbicles') results in a lognormal distribution with a standard deviation that is typically one-third of the mean measured diameter of the scatterers. More importantly, the mean value for the size distribution can be tightly controlled and is highly repeatable (\pm 50 nm for a specified diameter of 1 μ m). For the purposes of this discussion, we will consider suspensions or either IDE or 'Bubbicles' with a uniform size distribution and a constant number density (number of scatterers per unit volume) that corresponds to a concentration of 10 mg of either 1 or 2 μ m diameter solid IDE particles in a 1 ml volume of water. This will help focus our investigation of the small amount of entrained gas that needs to be stabilized within the rough, irregular surface and spatial structure of the particle/bubble agent to signifi-

cantly enhance its echogenicity. The effects of a non-

will be addressed in the discussion.

<u>_____اور ما المحالي م_اد ممر</u>

2. Theoretical model of the particle/bubble agent

There are three scattering regimes which may be characterized by the relative size of the scattering object compared to the wave length of the incident acoustic wave. The product ka (where $k = 2\pi/\lambda$ is the wavenumber

differentiate these regimes, which correspond to the cases where $ka \gg 1$, $ka \approx 1$ and $ka \ll 1$. We will be interested in the situation where $ka \ll 1$ (the scatterers are much smaller than the wavelength of the incident wave)

can be described by a distribution function which tends

smaller.

If we assume a speed of sound in water of 1490 m s⁻¹, then for an insonifying frequency of 5 MHz, $k_{a}=1.06 \times 10^{-2}$ for a subgrided volume with a diameter of 1 µm (a=0.5 µm) and $ka=2.12 \times 10^{-2}$ for a diameter of 2 µm (a=1 µm). For a 1 µm diameter free bubble at resonance ($f_{0}=11.9$ MHz) $ka=2.53 \times 10^{-2}$; for a 2 µm diameter free bubble at resonance ($f_{0}=4.80$ MHz) $ka=2.07 \times 10^{-2}$. In both cases, κ , the wave number, assumes propagation in water. Therefore the only situations in which resonance effects would come

fraction of gas in the particle/bubble agent is close to unity (i.e., close to being totally comprised of gas). As resonance effects would serve to augment the backscatter coefficient, the proposed model may slightly underestimate the scattering of particle/bubble agent for the larger 2 μ m scatterers that are comprised almost completely of gas. In the case of the particle/bubble agent, this is definitely not the case. The emerge of entremed gas is so sman as to be visually indistinguishable by ngift

picroscopy At a maximum since the particle/bubble agent does not exhibit buoyant behaviour, the volume of entrapped gas is less than 58% of the particle/bubble combination. This is based on a simple calculation involving the density of the IDE material that the particle/bubble agent is comprised of and that of the This is defined as the amount of energy re-directed from

of the incident wave, the result having the units of area [16].

The scattered acoustic pressure, p_s , at a distance r from a sphere with compressibility κ_e and density ρ_e embedded in a medium with compressibility κ and density ρ when $ka \ll 1$, is given [16] by

$$p_{s}(r,\varphi) = A \frac{e^{ikr}}{r} \Phi(\varphi)$$
⁽²⁾

where φ is the scattering angle distribution function, φ is the scattering angle (π for backscatter) and

$$\Phi(\varphi) = \frac{1}{3}k^2 a^3 \left(\frac{\kappa_{\rm e} - \kappa}{\kappa} + \frac{3\rho_{\rm e} - 3\rho}{2\rho_{\rm r} + \rho}\cos\varphi\right). \tag{3}$$

 $\sigma_{\rm d} = |\Phi(\varphi)|^2.$

(4)

A parameter that will allow comparison of the efficacy of the scattering of our models with physiological tissue, such as liver and blood, is the backscatter coefficient, which is tunically given in units of $m^{-1} cr^{-1}$ (or

steradians). For a distribution of discrete scatterers, the backscatter coefficient is found to be equal to the mean backscatter cross-section per unit volume, in other words,

$$\eta_{\rm BS} = n\sigma_{\rm d}(\pi)$$

(5)

where n is the number density of the scatterers. The

amount of backscattered power from a number of identical scatterers in a given volume that are exposed to the same incident pressure wave. Since direct evaluation of this value for a soft tissue requires knowledge of the scattering structures, their characteristics and number density within the tissue, these values are arrived at experimentally by measurement, comparison and

(e.g., phantoms of suspensions of glass of polystyrene basis and flat reflectors such as a steel plate). Some values reported in the interature for η_{BS} are given in Table 1.

It is essential to acknowledge that the following models incorporate only gross physical characteristics and features of the agent involved. They do not address

To indicate the scattering efficacy of the

ment of echogenicity of the particle/bubble agent with

single particle/bubble pair will be considered initially.

fraction of gas and guide further development and

optimization of this agent. Part of the incentive for developing this model stems from the fact that it was not feasible to directly ascertain through laboratory measurements the volume of gas entrapped in the

surface chemistry and morphology.

The modeling incorporates the concept of an effective scatterer of radius *a* containing some volume fraction of gas. Parameters used to describe this effective scatterer are a_p (the radius of a sphere containing the equivalent volume of solid material in the scatterer), a_g (the radius of a sphere containing the equivalent volume of gas in the scatterer), *a* (the overall radius of the scatterer) and *x* (the volume fraction of gas in the scatterer). The relationship between these four parameters is

$$a_{\rm p}^3 = a^3(1-x), \quad a_{\rm g}^3 = a^3x.$$
 (6)

3. Modeling

One way to model the scattering behaviour of the

stabilized gas as a single bubble of equivalent volume located next to a solid particle with a radius such that the volume of the single bubble plus the volume of the idealized solid particle equals the volume of the actual particle/bubble agent under consideration (Fig. 3(B)).

then a manualementh analy that there instantaneously

there is a negligible phase difference). The bubble and particle can be considered to be essentially at the same location from the pareneative of the receiving transducer.

in the particle/bubble pair.

JDE

(C)

Fig. 3. Schematic representation of the model. (A) The actual particle/bubble pair; (B) Approach 1: coherent summation of two inde-

volume of gas is sub-divided into multiple, smaller

into a single, larger scattering volume.

For the coherent scattering of the particle/bubble pair

tion of the pair Φ_t is the sum of scattering angle distribution function of the bubble, Φ_g and the scattering angle distribution function of the particle, Φ_p .

$$\Phi_{t}(\varphi) = \Phi_{g}(\varphi) + \Phi_{p}(\varphi). \tag{7}$$

Given that the particle material has compressibility κ_p and density ρ_p and the gas being discussed has compressibility κ_g and density ρ_g , we can define the compressibility difference of the particle and gas with

of the particle and gas with respect to water as γ_{ρ_p} and γ_{ρ_g} . We define the compressibility difference between a scattering material *s* and the propagating medium *m* (in this case water) as

$$\gamma_{\kappa_{\rm s}} = \frac{\kappa_{\rm s} - \kappa_{\rm m}}{\kappa_{\rm m}} \tag{8}$$

and the analogous density difference as

$$\gamma_{\rho_{\rm s}} = \frac{3\rho_{\rm s} - 3\rho_{\rm m}}{2\rho_{\rm s} + \rho_{\rm m}}.\tag{9}$$

A simple substitution of Eq. (3) for the bubble and the particle into Eq. (7), combined with the relationships in Eq. (6), results in the following expression:

$$\Phi_{\rm t}(\varphi) = \frac{1}{3} k^2 a^3 [x(\gamma_{\kappa_{\rm g}} + \gamma_{\rho_{\rm g}} \cos \varphi)]$$

Utilizing Eq. (10), we can evaluate Eq. (4) for $\varphi = \pi$, arriving at an expression for the differential backscattering cross-section for the particle/bubble pair

 $f_{11}(\varphi) = [\Phi_{1}(\varphi)]^{2} = \frac{1}{2} k^{4} q^{6} [x(\gamma - \gamma)]^{2}$

An alternative way to model the particle/bubble agent is to combine the scattering behaviour of particle and gas components into an 'equivalent scatterer' with a specified volume fraction of gas.

The effective compressibility. κ_{∞} for a volume con-

expressed [18] as

 $\kappa_{\rm e} = (1 - x) \kappa_{\rm p} + x \kappa_{\rm g}. \tag{12}$

and ρ_p (particle), a similar linear mixing relationship for the effective density can be derived, where the effective density, ρ_e , is shown to be

$$\rho_{\mathbf{e}} = (1 - x) \rho_{\mathbf{p}} + x \rho_{\mathbf{g}}. \tag{13}$$

Thus, we can model the complex particle/bubble

terer with some effective density and compressibility, as

 $\rho_{\rm e}$ for $\kappa_{\rm s}$ and $\rho_{\rm s}$ in Eqs. (8) and (9) and then substituting the resultant expressions in Eqs. (8) and (9) into Eqs. (3) and (4) results in a differential backscattering cross-section where

$$\sigma_{\rm d}(\varphi = \pi) = |\Phi(\varphi = \pi)|^2 = \frac{1}{9} k^4 a^6 |\gamma_{\kappa_{\rm e}}^2 - 2\gamma_{\kappa_{\rm e}} \gamma_{\rho_{\rm e}} + \gamma_{\rho_{\rm e}}^2|. \quad (14)$$

The equivalence of the two formulations of the model is exhibited in Fig. 4, which shows the backscatter

solid IDE particles alone (no gas) calculated using both approaches, for particle/bubble scatterers with overall diameters of 1 and 2 µm. This concentration produces a which ber density, n, of 7.94×10^{12} particles m⁻³ for 1 μ m diameter solid IDE spheres and 9.90×10^{11} particles m^{-3} for 2 µm diameter solid IDE spheres; these numbers were held constant in the calculations. The only region of the graph which exhibits any distinguishable difference between the two modeling approaches is in the extreme case corresponding to a volume fraction of gas equal to one, which essentially describes a simple gas bubble. The two models give very similar results for the size and frequency considered. It is also observed from Fig. 4 that there is a relatively constant, low backscatter coefficient for volume fractions of gas below 1×10^{-4} which then increases exponentially as the yalumo fracti

4. Experimental evaluation

A simple experiment was performed to evaluate the

by individual particles of the agent or to modulate it to any specified level, scattering measurements were taken of 'Bubbicles' suspensions and suspensions of plain IDE spheres with the same concentration and particle size distribution. The plain IDE spheres contain no gas and

maximum volume fraction of air was assumed to be considerably less than the 59% that would be measured to make the 'Bubbicles' neutrally buoyant.

utilizing a method similar to Wear [19] except for the use of a tone burst excitation signal with a frequency of 5 MHz. The use of a tone burst insonification helped provide signals with an increased signal to noise ratio and simplified the measurements. Calibration of the measurement system was based on methods described by Madson [20] and Income [21]. We incorporated a

Fig. 4. Backscatter coefficient at 5 MHz calculated from both models as functions of volume fraction of gas, x. Since results from Model 1 (solid triangles) and Model 2 (open squares) were similar, alternate values of each curve are displayed. The suspension medium is water, and the gas in the agent is air. The concentration of the agent is 10 mg ml^{-1} . Parameters used: water $\kappa_{H_2O} = 4.6 \times 10^{-10} \text{ m}^2 \text{ N}^{-1}$, $\rho_{H_2O} = 998 \text{ kg m}^{-3}$, $c_{H_2O} = 1.48 \times 10^3 \text{ m s}^{-1}$, air $\kappa_g = 7.0 \times 10^{-6} \text{ m}^2 \text{ N}^{-1}$, $\rho_g = 1.29 \text{ kg m}^{-3}$, solid IDE $\kappa_p = 2.0 \times 10^{-11} \text{ m}^2 \text{ N}^{-1}$, $\rho_p = 2.40 \times 10^3 \text{ kg m}^{-3}$.

modification for the use of a focused transducer based on the diffraction correction formulation of Chen [22]. A system backscatter coefficient calibration factor was ral of the radiation pattern and use of a diffraction correction factor.

Measurements were carried out with a gated transmis-

of the transducer allowed evaluation of the measurement $\frac{1}{2}$

The 10 cycle, 5 MHz tone burst was generated by a Houldt Packard 8116A function generator which was

being amplified by an Amplifier Research AR200L radio frequency (RF) amplifier. The output of the RF amplifier was routed to a Panametrics V309 narrow band, 6.35 mm radius transducer focused at 56.9 mm through a RITEC transmit/receive (T/R) switch. The suspension samples were contained in an acoustically transparent accounts for the electromechanical response of the system. The calibration factor was derived from the measurement of the system response to the reflection from a flat Panametrics stainless steel calibration block placed at the transducer focus and incorporates a diffraction correction factor for the beam pattern of a

	, 1 [,] 5 [,] 1 , 1		
water. The suspension was s	lowly and continuously	of the bar chart in Fig. 6 which shows measured back-	
bottom of the sample pipette	which was rotated by a	(not expected to stabilize gas) and representative values	
stir har was positioned well ou	t of the focal zone of the	'Rubbicles' refers to the particle/bubble agent shown in	
The received signal was g centered at the focal distance o specular reflections from the wa routed through the RITEC T/ gated Panametrics 5052PR pu	ated for a 10 µs epoch f the transducer to avoid all of the pipette and then R switch amplified by a ser/receiver, filtered by a	suspension of 'Bubbicles' has an effective volume frac- tion of gas of 3%. This corresponds to a volume fraction of 3×10^{-2} in Fig. 4 (a volume 1.57×10^{-20} m ³ relative to a sphere with a diameter of 1 µm and volume of 5.24×10^{-19} m ³ or a volume of 1.26×10^{-19} m ³ relative	
by a LeCroy 9430 high speed of measurement consisted of 50 sampled at a rate of 100 MHz oscilloscope and then downlo parallel bus connection to an IB	digital oscilloscope. Each sequential 10 µs scans that were stored in the baded via an IEEE-488 M-PC compatible micro-	4.19 \times 10 ⁻¹⁶ m ³). Even at this minute volume fraction, the backscatter coefficient of the suspension is comparable with or higher than the representative values for liver given in Table 1.	
computer running custom write ASYST software package Eac	en programs utilizing the h 10 us scan consisted of	.5. Discussion	
and after the time correspond	ing to the local point of	The model presented predicts a significant increase in	
	6 1		
points). The backscatter coeffic lated by taking the mean of 5 MHz and dividing it by a 1.E+01 1.E+00	the measured power at calibration factor that	Included in the particle/bubble scatterer. The similarity of results from two approaches to the model stems from the fact that both approaches incorporate a linear	
points). The backscatter coeffic lated by taking the mean of 5 MHz and dividing it by a 1.E+01 1.E+00 (1.5,00 1.E-01 1.E-02 1.E-03 1.E-04	In at 5 MHZ was calcu- the measured power at calibration factor that	Included in the particle/bubble scatterer. The similarity of results from two approaches to the model stems from the fact that both approaches incorporate a linear	

Fig. 6. Comparison of model predictions with experimental data at 5 MHz. The error bars represent the absolute value of the backscatter coefficient obtained due to plus or minus one standard deviation of the measured power scattered from the samples. Mean and standard deviation of the measured backscattered power were obtained from a series of 50 consecutive radio frequency waveforms.

dependence on the volume fraction of stabilized gas, and furthermore that the gas compressibility and density dominate the scattering process.

The scattering model predicts that only small gas

regions in blood and less than 10% for liver at concen-

distinction when compared with the majority of contrast agents currently available, which typically consist of a gas filled region with a thin shell or coating for stabiliza-

with a volume fraction of gas close to 1, that is, nearly 100% of the total scatterer volume.

particles is slightly lower than the measured result. This could be partly due to the fact that the measured IDE particles have some percentage of diameters above and below 1 μ m, whereas the models assume a strictly uniform 1 μ m diameter population in suspension. The 'Bubbicles' suspension scattering is consistent with predictions from the models, assuming gas volume fractions on the order of 10⁻². This volume fraction is not easy to verify independently, but is reasonable, given the surface morphology shown in Fig. 2(b) and the fact that the suspensions do not 'float' (as would be the case if the gas volume fraction exceeded 58%).

As mentioned in the introduction, the modeling assumed a uniform size distribution and a constant number density regardless of the volume fraction of gas

sized that only a small volume fraction of gas was

the scattering agent, assuming a constant number density equal to that for particles with no entrapped gas should adequagely reflect the actual circumstances. The variation in the size distribution presents a number of additional issues in terms of possible resonance frequencies and scattering cross-sections. In the size range of interest (mean radius of $0.5-1 \mu m$), as mentioned earlier, the larger scatterers would have to be comprised almost entirely of gas to consider resonance effects, a situation which physical observation of the agent in question discounts. In terms of the effect of scatterer size on the

of the radius, it should be remembered that the backscatter coefficient is determined by the number density of the scatterers, which is inversely proportional to at least the third power of the radius of the scatterers depending on spherical packing considerations. Since small volume fractions of gas produce such a significant change in the echogenicity of the scatterers, it would seem that the variation in differential scattering due to the distribution of volume fraction of gas values would be offset by the variation in number density due to the distribution of scatterer sizes. Further, it should be emphasized that the study was performed with a tone burst stimulus and provided a value for the backscatter coefficient at a single frequency of 5 MHz. Using multiple frequencies

careful consideration of scatterer size variability. While

stance, it would tend to detract from the main focus of this study which was to evaluate the significant gain in scattering possible from solid Rayleigh type scattering

them. In fact, a more comprehensive study to precisely determine the effects of particle size variability and frequency dependence of the backscatter coefficient of a

modeling approach that has been presented here.

Important clinical implications may be derived from these results. In order to obtain a contrast agent that provides useful blood and liver reticulo-endothelial (RE) cell phases, we must ensure that a stabilized gas volume fraction on the order of 10% is carried by the particles. Blood and liver concentrations of IDE and 'Bubbicles' in the range of $2-3 \text{ mg cc}^{-1}$ are achievable and nontoxic [11], therefore, the approach is promising.

Acknowledgement

This work was supported in part by NIH grant CA44732.

- [1] R. Gramiak, P.M. Shah, Echocardiography of the aortic root, Investigative Radiology 3 (1968) 356.
- [2] H. Feigenbaum, Echocardiography, 5th edn, Lea and Feibiger, Philadelphia, PA, 1994, pp. 119–121.
- [3] D.L. Miller, Ultrasonic detection of resonant cavitation bubbles
 if a flow tube by the 32coffd=flatffragenic winfshioff, Ulfragenic STP 3 Tr 0.002Tc tember (1981) 217.
- [4] T.G. Leighton, The Acoustic Bubble, Academic Press, London, 1994, pp. 67–72, 83–93.
- [5] J.J. Bikerman, Physical Surfaces, Academic Press, New York, 1970, pp. 57–61.
- [7] L. Crum, Acoustic cavitation, Notes for a short course given at Rochester Center for Biomedical Ultrasound, 1985.
- [8] J. Ophir, K.J. Parker, Contrast agents in diagnostic ultrasound, Ultrasound in Medicine and Biology 15 (4) (1989) 319.
- [9] H. Bleeker, K. Shung, J. Barnhart, On the application of ultrasonic contrast agents for blood flowmetry and assessment of cardiac perfusion, Journal Of Ultrasound in Medicine 9 (1990) 461.
- [10] M.W. Keller, S.B. Feinstein, R.A. Briller, S.M. Powsner, Automated production and analysis of contrast agents. Journal of Ultrasound in Medicine 5 (1986) 493.

[11] M.R. Violante, R.B. Baggs, T. Tuthill, P. Dentinger, K.J. Parker, Particle stabilized bubbles for enhanced organ ultrasound

dence of acoustic properties of canine myocardium, Journal of the Acoustic Society of America 86 (6) (1989) 2067.

Ultrasound in Medicine and Biology 13 (9) (1987) 555.

- [13] K.J. Parker, R.B. Baggs, R.M. Lerner, T.A. Tuthill, M.R. Violante, Ultrasound contrast for hepatic tumors using IDE particles, Investigative Radiology 25 (1990) 1135.
- [14] M.R. Violante, K. Mare, H.W. Fischer, Biodistribution of a particulate hepatolienographic CT contrast agent: a study of iodi-

(1984) 913.

- [21] M.F. Insana, E.L. Madsen, T.J. Hall, J.A. Zagzebski, Tests of the accuracy of a data reduction method for determination of acoustic backscatter coefficients, Journal of the Acoustic Society of America 79 (5) (1986) 1230.
- [22] X. Chen, K.Q. Schwarz, K.J. Parker, Acoustic coupling from a
- 1945.0. (1981) 40. pam(Radiology) Tj 0 Tr4308 TDD 3 T6Tr -0.0ble 0.0344 Tw (1) Tjournal302 the oran usbis Society60f TA marining the frame of [15] T.A. Tuthill, R.B. Baggs, M.R. Violante, K.J. Parker, Ultrasound [23] AIUM Standard Methods for Measuring Performance of Pulseproperties of liver with and without particulate contrast agents, Echo Ultrasound Imaging Equipment, Rockville, MD, American <u>Itrasound in Medicine and Biology 17 (3) (1991) 231</u> Institute of Ultrasound in Medicine, 1991, p.

Hill, New York, 1968, pp. 356, 398-441.

- scattering cross sections of some human and animal tissues, Jourbles in water, Journal of the Acoustic Society of America 84 (5 [25] D.Y. Fei, K.K. Snung, Ultrasonic backscatter from mammanan (1988) 985. tissues, Journal of the Acoustic Society of America 78 (3) [18] E.C. Everbach, Tissue composition determination via measure-(1985) 871.
- ment of the acoustic nonlinearity parameter, Ph.D. Thesis, Yale University, 1989.
- [19] K.A. Wear, M.R. Milunski, S.A. Wickline, J.E. Perez, B.E. Sobel, J.G. Miller, Contraction-related variation in frequency depen-
- [26] K.K. Shung, Y.W. Yuan, D.Y. Fei, Effect of flow disturbance on ultrasonic backscatter from blood, Journal of the Acoustic Society of America 75 (3) (1984) 1265.